Big Bangs and little bumps: the Story of Dark Matter

Peter Fisher
MIT
Oct. 17, 2014
THE EXPANDING UNIVERSE: A CAPSULE HISTORY

- Cosmic Background Afterglow
- First Stars
- Stars, Galaxies Develop
- Expansion Accelerates

- Big Bang
- Inflation

Dark Matter Dominates: 13.7
Dark Energy Dominates: 5
Billions of Years Before Today: 0
Fig. 1. Schematic view of the experimental setup showing the eight-crystal detector and its shielding.

Fig. 2. Exclusion plot for CDM from our experiment. CDM candidates with given mass m and interaction cross section σ above the curve are excluded. In particular Dirac neutrinos ν_D with standard coupling between 10 and 2400 GeV are ruled out.
Electrons, photons, cosmic rays

Neutrons, Dark Matter
This work supported by:

DOE, NSF, NASA
At MIT: Laboratory for Nuclear Science
MIT Kavli Institute
Institute for Solder Nanotechnology
Pappalardo Fellowship Program
Physics Department Graduate Fellowships
School of Science Graduate Fellowships
MIT President’s Graduate Fellowships
MIT Undergraduate Research Opportunity Program

Our graduate fellowships are supported by gifts to the institute and we thank everyone who contributes to our fellowship funds. It is a great way to support MIT by launching the career of a new scientist.